Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2332653, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517703

RESUMO

Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.


Assuntos
Alphacoronavirus , Coinfecção , Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Humanos , Suínos , Animais , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Gastroenterite Transmissível/genética , Recombinação Genética
2.
Vet J ; 304: 106083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365083

RESUMO

Transmissible gastroenteritis virus (TGEV) is an important pathogen capable of altering the expression profile of cellular miRNA. In this study, the potential of Polygonum cillinerve polysaccharide (PCP) to treat TGEV-infected piglets was evaluated through in vivo experiments. High-throughput sequencing technology was employed to identify 9 up-regulated and 17 down-regulated miRNAs during PCP-mediated inhibition of TGEV infection in PK15 cells. Additionally, miR-181 was found to be associated with target genes of key proteins in the apoptosis pathway. PK15 cells were treated with various concentrations of PCP following transfection with miR-181 mimic or inhibitor. Real-time PCR assessed the impact on TGEV replication, while electron microscopy (TEM) and Hoechst fluorescence staining evaluated cellular functionality. Western blot analysis was utilized to assess the expression of key signaling factors-cytochrome C (cyt C), caspase 9, and P53-in the apoptotic signaling pathway. The results showed that compared with the control group, 250 µg/mL PCP significantly inhibited TGEV gRNA replication and gene N expression (P < 0.01). Microscopic examination revealed uniform cell morphology and fewer floating cells in PCP-treated groups (250 and 125 µg/mL). TEM analysis showed no typical virus structure in the 250 µg/mL PCP group, and apoptosis staining indicated a significant reduction in apoptotic cells at this concentration. Furthermore, PCP may inhibit TGEV-induced apoptosis via the Caspase-dependent mitochondrial pathway following miR-181 transfection. These findings provide a theoretical basis for further exploration into the mechanism of PCP's anti-TGEV properties.


Assuntos
MicroRNAs , Polygonum , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Polygonum/genética , RNA Guia de Sistemas CRISPR-Cas , Transdução de Sinais , MicroRNAs/genética
3.
Biosens Bioelectron ; 246: 115900, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056342

RESUMO

The outbreak of transmissible gastroenteritis virus (TGEV) will cause huge economic losses to the whole pig industry. Hence, there is urgent need to develop a rapid and ultrasensitive method for detection of TGEV. As a nucleic acid detection technique, loop-mediated isothermal amplification (LAMP) can achieve quantitative detection of targeted nucleic acids with high sensitivity and selectivity. Nevertheless, the signal outputs of LAMP method must be acquired by complicated instruments. In this work, we firstly developed a LAMP photochromic sensing chip for porcine TGEV detection by combination of the photochromic sensing chip and nucleic acid amplification. The detection signal was based on color change of electrochromic material rather than electrical signal, and thus the detection signal can be obtained by visualization without relying on complicated instrument. The entire test was performed with small fluorinated indium tin oxide electrodes modified with zinc oxide (ZnO) (a photocatalytic material) and Prussian blue (PB) (an electrochromic material). When photoinduced electrons produced by ZnO were injected into PB under light, the PB was reduced to Prussian white. The higher the concentration of TGEV, the more double-stranded DNA was produced after amplification. The amplified product produced greater impedance, and fewer electron was transferred, which affect the corresponding color change of PB. The sensing chip also showed highly sensitive response to TGEV, with the minimum limit of detection was determined to be 2.5 fg/µL. The sensing chip developed herein will provide a new avenue for DNA amplification detection by visualization.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Vírus da Gastroenterite Transmissível , Óxido de Zinco , Suínos , Animais , Vírus da Gastroenterite Transmissível/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos
4.
J Virol ; 98(1): e0123923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38099687

RESUMO

Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.


Assuntos
Infecções por Coronavirus , Coronavirus , 60608 , Animais , Humanos , Camundongos , Antígenos CD13/genética , Coronavirus/classificação , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Deltacoronavirus , Vírus da Hepatite Murina/fisiologia , Suínos , Vírus da Gastroenterite Transmissível/genética , Tirosina , Replicação Viral/fisiologia , 60608/metabolismo
5.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116760

RESUMO

Transmissible gastroenteritis virus (TGEV) is a coronavirus that infects piglets with severe diarrhoea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. The underlying pathogenesis of TGEV infection and the effects of TGEV infection on host metabolites remain poorly understood. To investigate the critical metabolites and regulatory factors during TGEV infection in intestinal porcine epithelial cells (IPEC-J2), we performed metabolomic and transcriptomic analyses of TGEV-infected IPEC-J2 cells by LC/MS and RNA-seq techniques. A total of 87 differential metabolites and 489 differentially expressed genes were detected. A series of metabolites and candidate genes from glutathione metabolism and AMPK signalling pathway were examined through combined analysis of metabolome and transcriptome. We found glutathione peroxidase 3 (GPX3) is markedly reduced after TGEV infection, and a significant negative correlation between AMPK signalling pathway and TGEV infection. Exogenous addition of the AMPK activator COH-SR4 significantly downregulates stearoyl coenzyme A (SCD1) mRNA and inhibits TGEV replication; while exogenous GSK-690693 significantly promotes TGEV infection by inhibiting AMPK signalling pathway. In summary, our study provides insights into the key metabolites and regulators for TGEV infection from the metabolome and transcriptome perspective, which will offer promising antiviral metabolic and molecular targets and enrich the understanding of the existence of a similar mechanism in the host.


Assuntos
Gastroenterite Suína Transmissível , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Proteínas Quinases Ativadas por AMP , Linhagem Celular , Células Epiteliais , Perfilação da Expressão Gênica , Gastroenterite Suína Transmissível/genética
6.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958953

RESUMO

Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.


Assuntos
Gastroenterite Suína Transmissível , Vírus da Gastroenterite Transmissível , Suínos , Animais , Vírus da Gastroenterite Transmissível/genética , Gastroenterite Suína Transmissível/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6/farmacologia , Citocinas/genética , Citocinas/farmacologia , Interleucina-12/farmacologia
7.
Front Immunol ; 14: 1251001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942329

RESUMO

Introduction: Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are major intestinal coronaviruses that cause vomiting, diarrhea, dehydration, and mortality in piglets. These viruses coexist and lead to significant economic losses in the swine industry. Virus-like particles (VLPs) have emerged as promising alternatives to conventional inactivated vaccines due to their exceptional safety, efficacy, and ability to provide multi-disease protection with a single dose. Methods: Our study focused on specific antigenic epitopes from the PEDV S protein (SS2 and 2C10 regions) and the TGEV S protein (A and D sites) as target candidates. These epitopes were integrated into the ADDomer framework, and we successfully generated recombinant proteins AD, AD-P, AD-T, and AD-PT using the baculovirus expression vector system (BEVS). By meticulously optimizing conditions in High Five cells, we successfully expressed and purified the recombinant proteins. Subsequently, we developed the recombinant ADDomer-VLP vaccine and conducted a comprehensive evaluation of its efficacy in piglets. Results: Following ultrafiltration concentration and sucrose gradient centrifugation purification, the recombinant proteins self-assembled into VLPs as observed by transmission electron microscopy (TEM). Administration of the vaccine did not result in any adverse reactions in the immunized piglets. Additionally, no significant instances of fever were detected in any of the experimental groups, and there were no notable changes in average daily weight gain compared to the control group that received PBS. The recombinant ADDomer-VLP vaccines demonstrated strong immunogenicity, effectively stimulating the production of neutralizing antibodies against both PEDV and TGEV. Moreover, the recombinant ADDomer-VLP vaccine induced elevated levels of IFN-γ, IL-2, and IL-4, and enhanced cytotoxic T lymphocyte (CTL) activity in the peripheral blood of piglets. Discussion: These recombinant VLPs have demonstrated the ability to induce strong cellular and humoral immune responses in piglets, making them an incredibly promising platform for the rapid and simplified development of epitope vaccines.


Assuntos
Vírus da Gastroenterite Transmissível , Vacinas de Partículas Semelhantes a Vírus , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Epitopos , Anticorpos Antivirais , Vacinas Sintéticas , Imunidade
8.
Monoclon Antib Immunodiagn Immunother ; 42(5): 178-181, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37855908

RESUMO

Porcine transmissible gastroenteritis virus (TGEV) infection results in severe gastrointestinal disease manifesting vomiting, diarrhea in neonatal porcine, with extremely high mortality. Monoclonal antibody (MAb) specific to TGEV nonstructural protein (NSP)14 that contains two functional domains, exonuclease (ExoN) and methyltransferase (MTase) domains, may help elucidate the role of NSP14 in the viral life-cycle. In this study, we developed a murine MAb, designated 12F1, against TGEV NSP14 using traditional cell-fusion technique. It was shown the MAb can exclusively bind to viral NSP14, as evidenced by the results of indirect fluorescent assay and western blotting. Intriguingly, epitope screening assay shown that 12F1 targets a hinge region connecting ExoN and N7-MTase of NSP14.


Assuntos
Vírus da Gastroenterite Transmissível , Animais , Suínos , Camundongos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/metabolismo , Metiltransferases , Exonucleases , Anticorpos Monoclonais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Éxons/genética
9.
Vet Microbiol ; 277: 109622, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36543089

RESUMO

Interferon-induced transmembrane proteins (IFITMs) play an important role in the innate immune response triggered by viral infection. Transmissible gastroenteritis virus (TGEV) causes severe diarrhea, vomiting and dehydration in piglets, resulting in huge economic losses to the swine industry. In this study, we showed that IFITM3 inhibits the replication of TGEV and interferes with the binding of TGEV to PK15 cells. Moreover, the inhibitory effect of IFITM3 on TGEV circumvents the upregulation of inflammatory cytokines. Subsequently, we found that the M22A mutant loses part of the antiviral effect of IFITM3 on TGEV; in contrast, the K24A mutant enhances the antiviral effect of IFITM3. Notably, our data shows a synergistic effect between IFITM3 and CQ, which further amplifies the antiviral effect against TGEV.


Assuntos
Gastroenterite Suína Transmissível , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Interferons , Antivirais , Imunidade Inata
10.
Gene ; 851: 147007, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36334619

RESUMO

The prevalence of porcine enteric coronaviruses (PECs), including transmissible gastroenteritis virus (TGEV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine delta coronavirus (PDCoV), and porcine epidemic diarrhea virus (PEDV), poses a serious threat to animal and public health. Here, we aimed to further optimize the porcine aminopeptidase N (pAPN) gene editing strategy to explore the balance between individual antiviral properties and the biological functions of pAPN in pigs. Finally, APN-chimeric gene-edited pigs were produced through a CRISPR/Cas9-mediated knock-in strategy. Further reproductive tests indicated that these gene-edited pigs exhibited normal pregnancy rates and viability. Notably, in vitro viral challenge assays further demonstrated that porcine kidney epithelial cells isolated from F1-generation gene-edited pigs could effectively inhibit TGEV infection. This study is the first to report the generation of APN-chimeric pigs, which may provide a natural host animal for characterizing PEC infection with APN and help in the development of better antiviral solutions.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Suínos/genética , Animais , Edição de Genes , Sistemas CRISPR-Cas , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Gastroenterite Transmissível/genética , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Antivirais , Doenças dos Suínos/genética
11.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077190

RESUMO

Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species transmission. Transmissible gastroenteritis virus (TGEV) and PDCoV have caused tremendous damage and loss to the pig industry around the world. Therefore, we analyzed the genome sequence data of these two SeCoVs by evolutionary dynamics and phylogeography, revealing the genetic diversity and spatiotemporal distribution characteristics. Maximum likelihood and Bayesian inference analysis showed that TGEV could be divided into two different genotypes, and PDCoV could be divided into four main lineages. Based on the analysis results inferred by phylogeography, we inferred that TGEV might originate from America, PDCoV might originate from Asia, and different migration events had different migration rates. In addition, we also identified positive selection sites of spike protein in TGEV and PDCoV, indicating that the above sites play an essential role in promoting membrane fusion to achieve adaptive evolution. In a word, TGEV and PDCoV are the past and future of SeCoV, and the relatively smooth transmission rate of TGEV and the increasing transmission events of PDCoV are their respective transmission characteristics. Our results provide new insights into the evolutionary characteristics and transmission diversity of these SeCoVs, highlighting the potential for cross-species transmission of SeCoV and the importance of enhanced surveillance and biosecurity measures for SeCoV in the context of the COVID-19 epidemic.


Assuntos
COVID-19 , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Teorema de Bayes , Deltacoronavirus , Humanos , Filogeografia , Suínos , Doenças dos Suínos/epidemiologia , Vírus da Gastroenterite Transmissível/genética
12.
J Biol Chem ; 298(9): 102280, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863430

RESUMO

Transmissible gastroenteritis virus (TGEV), a member of the coronavirus family, is the pathogen responsible for transmissible gastroenteritis, which results in mitochondrial dysfunction in host cells. Previously, we identified 123 differentially expressed circular RNAs (cRNA)from the TGEV-infected porcine intestinal epithelial cell line jejunum 2 (IPEC-J2). Previous bioinformatics analysis suggested that, of these, circBIRC6 had the potential to regulate mitochondrial function. Furthermore, mitochondrial permeability transition, a key step in the process of mitochondrial dysfunction, is known to be caused by abnormal opening of mitochondrial permeability transition pores (mPTPs) regulated by the voltage-dependent anion-selective channel protein 1 (VDAC)-Cyclophilin D (CypD) complex. Therefore, in the present study, we investigated the effects of circBIRC6-2 on mitochondrial dysfunction and opening of mPTPs. We found that TGEV infection reduced circBIRC6-2 levels, which in turn reduced mitochondrial calcium (Ca2+) levels, the decrease of mitochondrial membrane potential, and opening of mPTPs. In addition, we also identified ORFs and internal ribosomal entrance sites within the circBIRC6-2 RNA. We demonstrate circBIRC6-2 encodes a novel protein, BIRC6-236aa, which we show inhibits TGEV-induced opening of mPTPs during TGEV infection. Mechanistically, we identified an interaction between BIRC6-236aa and VDAC1, suggesting that BIRC6-236aa destabilizes the VDAC1-CypD complex. Taken together, the results suggest that the novel protein BIRC6-236aa encoded by cRNA circBIRC6-2 inhibits mPTP opening and subsequent mitochondrial dysfunction by interacting with VDAC1.


Assuntos
Proteínas Inibidoras de Apoptose , Mitocôndrias , Poro de Transição de Permeabilidade Mitocondrial , RNA Circular , Vírus da Gastroenterite Transmissível , Animais , Cálcio/metabolismo , Linhagem Celular , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Mitocôndrias/virologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Suínos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/fisiologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo
13.
Front Immunol ; 13: 844657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401515

RESUMO

Porcine epidemic diarrhea (PED) and transmissible gastroenteritis (TGE) caused by porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are two highly contagious intestinal diseases in the swine industry worldwide. Notably, coinfection of TGEV and PEDV is common in piglets with diarrhea-related diseases. In this study, intestinal porcine epithelial cells (IPEC-J2) were single or coinfected with PEDV and/or TGEV, followed by the comparison of differentially expressed genes (DEGs), especially interferon-stimulated genes (ISGs), between different groups via transcriptomics analysis and real-time qPCR. The antiviral activity of swine interferon-induced transmembrane protein 3 (sIFITM3) on PEDV and TGEV infection was also evaluated. The results showed that DEGs can be detected in the cells infected with PEDV, TGEV, and PEDV+TGEV at 12, 24, and 48 hpi, and the number of DEGs was the highest at 24 hpi. The DEGs are mainly annotated to the GO terms of protein binding, immune system process, organelle part, and intracellular organelle part. Furthermore, 90 ISGs were upregulated during PEDV or TGEV infection, 27 of which were associated with antiviral activity, including ISG15, OASL, IFITM1, and IFITM3. Furthermore, sIFITM3 can significantly inhibit PEDV and TGEV infection in porcine IPEC-J2 cells and/or monkey Vero cells. Besides, sIFITM3 can also inhibit vesicular stomatitis virus (VSV) replication in Vero cells. These results indicate that sIFITM3 has broad-spectrum antiviral activity.


Assuntos
Coinfecção , Gastroenterite Suína Transmissível , Vírus da Diarreia Epidêmica Suína , Vírus da Gastroenterite Transmissível , Animais , Antivirais , Chlorocebus aethiops , Diarreia , Gastroenterite Suína Transmissível/metabolismo , Interferons/genética , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Transcriptoma , Vírus da Gastroenterite Transmissível/genética , Células Vero
14.
Viruses ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216010

RESUMO

Pigs play an important role in agriculture and biomedicine. The globally developing swine industry must address the challenges presented by swine-origin viruses, including ASFV (African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV (porcine epidemic diarrhea virus), PRV (pseudorabies virus), CSFV (classical swine fever virus), TGEV (transmissible gastroenteritis virus), et al. Despite sustained efforts by many government authorities, these viruses are still widespread. Currently, gene-editing technology has been successfully used to generate antiviral pigs, which offers the possibility for increasing animal disease tolerance and improving animal economic traits in the future. Here, we summarized the current advance in knowledge regarding the host factors in virus infection and the current status of genetically modified pigs that are resistant to virus infection in the world. There has not been any report on PEDV-resistant pigs, ASFV-resistant pigs, and PRV-resistant pigs owing to the poor understanding of the key host factors in virus infection. Furthermore, we summarized the remaining problems in producing virus-resistant pigs, and proposed several potential methods to solve them. Using genome-wide CRISPR/Cas9 library screening to explore the key host receptors in virus infection may be a feasible method. At the same time, exploring the key amino acids of host factors in virus infection with library screening based on ABEs and CBEs (Bes) may provide creative insight into producing antiviral pigs in the future.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Clássica/genética , Herpesvirus Suídeo 1/genética , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Gastroenterite Transmissível/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Suínos/virologia , Viroses/prevenção & controle
15.
Sci China Life Sci ; 65(7): 1413-1429, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34826094

RESUMO

Although the functional parameters of microRNAs (miRNAs) have been explored to some extent, the roles of these molecules in coronavirus infection and the regulatory mechanism of miRNAs in virus infection are still unclear. Transmissible gastroenteritis virus (TGEV) is an enteropathgenic coronavirus and causes high morbidity and mortality in suckling piglets. Here, we demonstrated that microRNA-27b-3p (miR-27b-3p) suppressed TGEV replication by directly targeting porcine suppressor of cytokine signaling 6 (SOCS6), while TGEV infection downregulated miR-27b-3p expression in swine testicular (ST) cells and in piglets. Mechanistically, the decrease of miR-27b-3p expression during TGEV infection was mediated by the activated inositol-requiring enzyme 1 (IRE1) pathway of the endoplasmic reticulum (ER) stress. Further studies showed that when ER stress was induced by TGEV, IRE1 acted as an RNase activated by autophosphorylation and unconventionally spliced mRNA encoding a potent transcription factor, X-box-binding protein 1 (Xbp1s). Xbp1s inhibited the transcription of miR-27 and ultimately reduced the production of miR-27b-3p. Therefore, our findings indicate that TGEV inhibits the expression of an anti-coronavirus microRNA through the IRE1 pathway and suggest a novel way in which coronavirus regulates the host cell response to infection.


Assuntos
Infecções por Coronavirus , Coronavirus , MicroRNAs , Vírus da Gastroenterite Transmissível , Animais , Antivirais , Linhagem Celular , Coronavirus/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Suínos , Vírus da Gastroenterite Transmissível/genética
16.
Vet Res Commun ; 45(2-3): 75-86, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34251560

RESUMO

The recent prevalence of coronavirus (CoV) poses a serious threat to animal and human health. Currently, porcine enteric coronaviruses (PECs), including the transmissible gastroenteritis virus (TGEV), the novel emerging swine acute diarrhoea syndrome coronavirus (SADS-CoV), porcine delta coronavirus (PDCoV), and re-emerging porcine epidemic diarrhoea virus (PEDV), which infect pigs of different ages, have caused more frequent occurrences of diarrhoea, vomiting, and dehydration with high morbidity and mortality in piglets. PECs have the potential for cross-species transmission and are causing huge economic losses in the pig industry in China and the world, which therefore needs to be urgently addressed. Accordingly, this article summarises the pathogenicity, prevalence, and diagnostic methods of PECs and provides an important reference for their improved diagnosis, prevention, and control.


Assuntos
Infecções por Coronavirus/veterinária , Doenças dos Suínos/virologia , Alphacoronavirus/genética , Alphacoronavirus/patogenicidade , Animais , China/epidemiologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Deltacoronavirus/genética , Deltacoronavirus/patogenicidade , Humanos , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Prevalência , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/patogenicidade
17.
PLoS One ; 16(6): e0253622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166425

RESUMO

Porcine epidemic diarrhea virus (PEDV), a leading cause of piglet diarrhea outbreaks, poses a significant danger to the swine industry. The aim of this study was to investigate the epidemic characteristics of PEDV that was circulating in Guangdong province, one of China's major pig producing provinces. Clinical samples were collected from eight pig farms in Guangdong province between 2018 and 2019 and tested for the major porcine enteric pathogens, including PEDV, transmissible gastroenteritis virus (TGEV), Swine enteric coronavirus (SeCoV), Swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine deltacoronavirus (PDCoV), and porcine rotavirus (RV). As a result, only PEDV and RV were detected at a rate of 47.0% (16/34) and 18.6% (8/34), respectively. Coinfectoin with PEDV and RV occurred at a rate of PEDV 12.5% (2/16). Subsequently, the full-length S gene sequences of 13 PEDV strains were obtained, and phylogenetic analysis suggested the presence of GII-c group PEDV strains in this region (non-S-INDEL). Two novel common amino acid insertions (55T/IG56 and 551L) and one novel glycosylation site (1199G+) were detected when the CV777 and ZJ08 vaccine strains were compared. Furthermore, intragroup recombination events in the S gene regions 51-548 and 2478-4208 were observed in the PEDV strains studied. In summary, the observations provide current information on the incidence of viral agents causing swine diarrhea in southern China and detailed the genetic characteristics and evolutionary history of the dominant PEDV field strains. Our findings will aid in the development of an updated vaccine for the prevention and control of PEDV variant strains.


Assuntos
Infecções por Coronavirus/genética , Surtos de Doenças , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Doenças dos Suínos/genética , Alphacoronavirus/genética , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia , Vírus da Gastroenterite Transmissível/genética
18.
Lab Chip ; 21(6): 1118-1130, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33527920

RESUMO

The porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) are emerging/reemerging coronaviruses (CoVs) of neonatal pigs that cause great economic losses to pig farms and pork processors. Specific, rapid, and simple multiplex detection of these viruses is critical to enable prompt implementation of appropriate control measures. Conventional methods for molecular diagnosis require skilled personnel and relatively sophisticated equipment, restricting their use in centralized laboratories. We developed a low-cost, rapid, semi-quantitative, field deployable, 3D-printed microfluidic device for auto-distribution of samples and self-sealing and real-time and reverse transcription-loop-mediated isothermal amplification (RT-LAMP), enabling the co-detection of PEDV, TGEV and PDCoV within 30 minutes. Our assay's analytical performance is comparable with a benchtop, real-time RT-LAMP assay and the gold standard quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay with limits of detection of 10 genomic copies per reaction for PEDV and PDCoV, and 100 genomic copies per reaction for TGEV. Evaluation of clinical specimens from diseased pigs with our microfluidic device revealed excellent concordance with both benchtop RT-LAMP and qRT-PCR. Our portable RT-LAMP microfluidic chip will potentially facilitate simple, specific, rapid multiplexed detection of harmful infections in minimally equipped veterinary diagnostic laboratories and on-site in pigs' farms.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Deltacoronavirus , Dispositivos Lab-On-A-Chip , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Vírus da Diarreia Epidêmica Suína/genética , Impressão Tridimensional , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnóstico , Vírus da Gastroenterite Transmissível/genética
19.
mBio ; 13(1): e0360021, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100869

RESUMO

Pyroptosis, a programmed cell death, functions as an innate immune effector mechanism and plays a crucial role against microbial invasion. Gasdermin D (GSDMD), as the main pyroptosis effector, mediates pyroptosis and promotes releasing proinflammatory molecules into the extracellular environment through pore-forming activity, modifying inflammation and immune responses. While the substantial importance of GSDMD in microbial infection and cancer has been widely investigated, the role of GSDMD in virus infection, including coronaviruses, remains unclear. Enteric coronavirus transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) are the major agents for lethal watery diarrhea in neonatal pigs and pose the potential for spillover from pigs to humans. In this study, we found that alphacoronavirus TGEV upregulated and activated GSDMD, resulting in pyroptosis after infection. Furthermore, the fragment of swine GSDMD from amino acids 242 to 279 (242-279 fragment) was required to induce pyroptosis. Notably, GSDMD strongly inhibited both TGEV and PDCoV infection. Mechanistically, the antiviral activity of GSDMD was mediated through promoting the nonclassical release of antiviral beta interferon (IFN-ß) and then enhancing the interferon-stimulated gene (ISG) responses. These findings showed that GSDMD dampens coronavirus infection by an uncovered GSDMD-mediated IFN secretion, which may present a novel target of coronavirus antiviral therapeutics. IMPORTANCE Coronaviruses, primarily targeting respiratory and gastrointestinal epithelia in vivo, have a serious impact on humans and animals. GSDMD, a main executioner of pyroptosis, is highly expressed in epithelial cells and involves viral infection pathogenesis. While the functions and importance of GSDMD as a critical regulator of inflammasome activities in response to intracellular bacterial infection have been extensively investigated, the roles of GSDMD during coronavirus infection remain unclear. We here show that alphacoronavirus TGEV triggered pyroptosis and upregulated GSDMD expression, while GSDMD broadly suppressed the infection of enteric coronavirus TGEV and PDCoV by its pore-forming activity via promoting unconventional release of IFN-ß. Our study highlights the importance of GSDMD as a regulator of innate immunity and may open new avenues for treating coronavirus infection.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Gastroenterite Transmissível , Suínos , Animais , Humanos , Interferon beta/metabolismo , Gasderminas , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/metabolismo , Antivirais/metabolismo
20.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114322

RESUMO

Transmissible gastroenteritis virus (TGEV) is a coronavirus associated with diarrhea and high mortality in piglets. To gain insight into the evolution and adaptation of TGEV, a comprehensive analysis of phylogeny and codon usage bias was performed. The phylogenetic analyses of maximum likelihood and Bayesian inference displayed two distinct genotypes: genotypes I and II, and genotype I was classified into subtypes Ia and Ib. The compositional properties revealed that the coding sequence contained a higher number of A/U nucleotides than G/C nucleotides, and that the synonymous codon third position was A/U-enriched. The principal component analysis based on the values of relative synonymous codon usage (RSCU) showed the genotype-specific codon usage patterns. The effective number of codons (ENC) indicated moderate codon usage bias in the TGEV genome. Dinucleotide analysis showed that CpA and UpG were over-represented and CpG was under-represented in the coding sequence of the TGEV genome. The analyses of Parity Rule 2 plot, ENC-plot, and neutrality plot displayed that natural selection was the dominant evolutionary driving force in shaping codon usage preference in genotypes Ia and II. In addition, natural selection played a major role, while mutation pressure had a minor role in driving the codon usage bias in genotype Ib. The codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses suggested that genotype I might be more adaptive to pigs than genotype II. Current findings contribute to understanding the evolution and adaptation of TGEV.


Assuntos
Uso do Códon , Evolução Molecular , Vírus da Gastroenterite Transmissível/genética , Ilhas de CpG , Genoma Viral , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...